β-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment

نویسندگان

  • Jun Cai
  • Xiaoping Qi
  • Norbert Kociok
  • Sergej Skosyrski
  • Alonso Emilio
  • Qing Ruan
  • Song Han
  • Li Liu
  • Zhijuan Chen
  • Catherine Bowes Rickman
  • Todd Golde
  • Maria B Grant
  • Paul Saftig
  • Lutgarde Serneels
  • Bart de Strooper
  • Antonia M Joussen
  • Michael E Boulton
چکیده

β-Secretase (BACE1) is a major drug target for combating Alzheimer's disease (AD). Here we show that BACE1(-/-) mice develop significant retinal pathology including retinal thinning, apoptosis, reduced retinal vascular density and an increase in the age pigment, lipofuscin. BACE1 expression is highest in the neural retina while BACE2 was greatest in the retinal pigment epithelium (RPE)/choroid. Pigment epithelial-derived factor, a known regulator of γ-secretase, inhibits vascular endothelial growth factor (VEGF)-induced in vitro and in vivo angiogenesis and this is abolished by BACE1 inhibition. Moreover, intravitreal administration of BACE1 inhibitor or BACE1 small interfering RNA (siRNA) increases choroidal neovascularization in mice. BACE1 induces ectodomain shedding of vascular endothelial growth factor receptor 1 (VEGFR1) which is a prerequisite for γ-secretase release of a 100 kDa intracellular domain. The increase in lipofuscin following BACE1 inhibition and RNAI knockdown is associated with lysosomal perturbations. Taken together, our data show that BACE1 plays a critical role in retinal homeostasis and that the use of BACE inhibitors for AD should be viewed with extreme caution as they could lead to retinal pathology and exacerbate conditions such as age-related macular degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice.

Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the pro...

متن کامل

Identification of myo-inositol hexakisphosphate (IP6) as a β-secretase 1 (BACE1) inhibitory molecule in rice grain extract and digest

Alzheimer's disease (AD) is widely considered to be caused by amyloid-β peptide (Aβ) accumulation in the brain. Aβ is excised from amyloid-β precursor protein through sequential cleavage by β-secretase 1 (BACE1) and γ-secretase. Thus, BACE1 inhibition could prevent Aβ accumulation. Here, we identified myo-inositol hexakisphosphate (IP6) as a BACE1 inhibitory molecule in rice grain extract and d...

متن کامل

β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease

Alzheimer's disease (AD) and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO), a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: th...

متن کامل

The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity.

The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β (Aβ) and improving memory in Alzheimer's disease (AD), as reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ, and cathepsin B...

متن کامل

PEDF Regulates Vascular Permeability by a γ-Secretase-Mediated Pathway

Increased vascular permeability is an inciting event in many vascular complications including diabetic retinopathy. We have previously reported that pigment epithelium-derived factor (PEDF) is able to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis through a novel γ-secretase-dependent pathway. In this study, we asked whether inhibition of VEGF-induced permeability by PED...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012